Overblog Suivre ce blog
Editer l'article Administration Créer mon blog

Dogma

21 Décembre 2005, 12:25pm

Publié par Fabien Besnard

Extrait de l’article « Mémorisation ou raisonnement ? » d’Alexei Volkov, professeur du département de mathématiques de l’Université du Québec à Montréal, paru dans le dernier numéro des « Génies de la Science » consacré à Aristote :

« Aujourd’hui, les statistiques sur les olympiades mathématiques internationales des années 1995-2004 attribuent la meilleure performance à la Chine populaire (moyenne des places 1,94), loin devant la France, dont la moyenne est de 31,4. Entre les deux, pas moins de sept pays de l’Asie […] N’y aurait-il pas un enseignement à tirer du raisonnement algorithmique traditionnel chinois pour l’éducation des enfants occidentaux ?

Certains pays se sont déjà éloignés de la tradition euclidienne. Axiomes, théorèmes, preuves, ont ainsi disparu du vocabulaire des enfants canadiens. Ceux-ci mesurent, font des « expériences » pour trouver une formule approximative de l’aire du cercle, expérimentant les mathématiques un peu comme auraient pu le faire les élèves de la Chine ancienne. Coïncidence ? Le Canada, avec sa moyenne de 18,1 est placé plus haut que la France dans le classement évoqué ci-dessus, la France où la tradition euclidienne est encore bien ancrée dans les esprits… »

L’enseignement que je tire de cet article est d’abord le manque absolu de rigueur dont peut faire un preuve un « professeur du département de mathématiques à l’Université du Québec ». Le nombre d’approximations, d’amalgames, d’omissions est tel qu’on se demande si ce texte a été écrit de bonne foi où s’il s’agit de pure propagande. Comme ce texte est assez caractéristique des « vérités » qu’on nous assène régulièrement par médias interposés (le terme « bourrage de crâne » serait probablement plus approprié)  pour justifier les réformes de l’éducation dans notre pays, je vais en faire rapidement l’analyse ici.

Tout d’abord les faits. Si l’on en croit l’auteur, les petits français sont les dignes représentants de la tradition euclidienne, et connaissent par cœur leurs axiomes, théorèmes et preuves. Si vous n’êtes pas plié de rire c’est que vous avez quitté depuis longtemps l’univers de l’enseignement des maths en France. Mon expérience est que pratiquement aucun élève de niveau bac S+1 ne connaît le sens des mots « axiomes, lemme, corollaire ». Seul le mot « théorème » a un sens pour eux, et pas toujours celui qu’on croit. La nécessité de démontrer, l’importance de la démonstration, la distinction pourtant basique entre définition et théorème, tout cela est loin d’être acquis à ce niveau. Si l’on consulte les programmes, on peut constater que la démonstration de théorèmes ne prend vraiment de l’importance qu’à partir de la seconde. Par ailleurs, l’étude de la logique formelle, à mon avis indispensable, est proscrite dans le secondaire. Le sens de l’implication et de l’équivalence par exemple, doit émerger à travers d’autres activités et ces connecteurs logiques ne doivent pas être étudiés pour eux-mêmes (voir le programme de seconde). En revanche, un esprit algorithmique proche de ce que l’auteur pare de toutes les qualités a manifestement inspiré les programmes de maths depuis Claude Allègre. Par exemple on étudie, en dépit du bon sens, l’algorithme d’Euclide (tient, serait-ce le même Euclide, le grand méchant poseur d’axiomes ?) au collège et les nombres premiers en seconde. La programmation des calculatrices (l’utilisation de tableurs etc…) est également au programme de différents niveaux et est vivement encouragée par l’inspection. Enfin, il suffit de consulter le programme de sixième (certes nouveau mais sans grand changement par rapport à celui de 95) pour y voir ce que A. Volkov prend précisément comme exemple à suivre dans son texte : « des activités de mesurage permettent de conjecturer l’existence d’une relation de proportionnalité entre la longueur du cercle et le rayon ». Sans m’avancer beaucoup je peux, moi, conjecturer que les professeurs ont de tout temps proposé cette activité aux élèves, sauf peut-être les puristes des « maths modernes ». S’esbaudir devant ce genre de choses, présentées comme révolutionnaires alors qu’elles sont totalement banales, est le genre de caricature auquel on est habitué dans l’éducation nationale :  en mettant l’accent sur des activité soi-disant nouvelles alors qu’elles étaient déjà pratiquées par permet de vider les programmes du reste de leur contenu. Mais je digresse…

Si l’équation France=tradition euclidienne est très approximative de nos jours, qu’en est-il de celle que l’auteur sous-entend seulement, mais qui fonde entièrement son raisonnement : Asie=tradition algorithmique ? Personnellement je n’en ai aucune idée, mais le fait que la tradition algorithmique des maths chinoises ait perdurée jusqu’à nos jours est tout sauf évident, et étant donné l’importance de ce point dans le raisonnement de l’auteur il est fort étonnant que celui-ci n’y consacre pas même une ligne ! Si quelqu’un a des informations sur le sujet…

Enfin, faire des olympiades internationales de maths le critère par excellence pour juger du niveau de l’enseignement d’un pays est assez ridicule. Who cares ? Pour juger du niveau de l’école tennistique d’un pays j’aurais tendance à regarder le nombre de joueurs de ce pays classés à l’ATP rapporté au nombre de clubs, plutôt que les résultats des compétitions juniors. Regardons alors le nombre de médailles Fields : j’ai compté 8 français et un seul chinois (Yau, qui est né en Chine puis est parti aux USA mais j'ignore à quel âge). Nul doute que dans un proche avenir les chinois contribuent plus largement aux progrès des mathématiques et obtiennent des médailles fields, quant à savoir si cela a le moindre rapport avec la tradition algorithmique… Quant à la part que les français prendront dans ces progrès, j'ai bien peur qu'elle n'aille en diminuant.

Par ailleurs on peut constater qu’en 2002 le pays arrivé second aux olympiades était la Russie, que j’aurais tendance à ranger dans le camp de la « tradition euclidienne ». Bref tout ceci est assez ridicule, d’autant plus qu’on sait que certains pays, comme la Chine, accordent beaucoup d’importance aux résultats de prestige de ce genre et que les candidats sont spécialement préparés pour ces compétitions, ce qui est beaucoup moins le cas en France.

 

Mais finalement le plus ridicule dans toute ça, n’est-ce pas cette idée sous-jacente que l’une des deux supposées traditions soit supérieure à l’autre ? En effet, on apprend qu’au Canada on va jusqu’à supprimer toute référence à la notion de théorème, et selon l’auteur il y aurait lieu de s’en réjouir ! Une attitude aussi dogmatique me rappelle celle de certains bourbakistes qui, s’étant fourvoyé dans la promotion des « maths modernes » allaient jusqu’à crier « à bas Euclide ! » (qui n’était pas assez rigoureux à leurs yeux : ils étaient plus euclidiens qu’Euclide), avec les résultats que l’on sait. Pourtant il n’y avait pas que du mauvais dans les maths modernes : je garde un bon souvenir de l’initiation précoce aux ensembles. Mais, en mettant tous les dogmes de côté, n’est-ce pas l’évidence même que les mathématiques sont profondément unies, et qu’on ne peut pas faire de mathématiques sérieusement sans aborder la logique, la démonstration de théorèmes, l’édification d’une axiomatique (cet aspect a complètement disparu en France), l’exécution d’un algorithme (poser une division est un algorithme), la justification du bien-fondé d’un algorithme (point délicat, rarement abordé) et bien d’autres choses encore ?

Commenter cet article

Fabien Besnard 23/12/2005 09:41

>Ok, on admet l'apatride Grothendieck, cela fait péniblement 8. >Quoi ??? Non ??? Tu ne comptes quand même pas Deligne et >Bourgain ???
Bah si. Belges ? Honte sur moi. Je vais corriger.
Quant à Grothendieck, dans la mesure où il a reçu toute sa formation mathématique en France je ne vois pas pourquoi on ne le compterait pas.
Je suis d'accord avec ce que tu dis sur le futur des maths française. Que la France soit mal classée est effectivement une indication, quoi que pas la plus claire, de la baisse très marquée du niveau en maths dans l'enseignement.

dominique 22/12/2005 23:14

Comme souvent, assez intéressant cependant, il me vient rapidement 2 remarques :
a) 10 médailles fields françaises ????
Je connais Schwartz, Thom, Serre, Connes, Lions, Yoccoz et Lafforgue. Ok, on admet l'apatride Grothendieck, cela fait péniblement 8. Quoi ??? Non ??? Tu ne comptes quand même pas Deligne et Bourgain ???
b ) Quand à la correlation entre les olympiades et le niveau des mathématiques, si elle n'est pas absolue, elle donne hélas quelques indications :
C'est vrai, les chinois sont obsédés par ce concours, et sur-sélection sur une population tellement importante que même sans avoir notre niveau d'instruction général, l'élite est fatalement de très, très haut niveau. Par exemple,j'ai lu que quelques fois, 2 candidats sont choisis sur un seul canton !!(environ 50 millions d'habitants). je sais également que leur formation spécifique à ce concours est ahurissante (ils doivent lire des articles). Cepandant, nos représentants sont les lauréats du concours général et sont sans exception (une je crois sur les 10 dernières années) de futurs normaliens de la rue d'Ulm. Je ne pense pas non plus que leur formation pour les olympiades, ou leur vécu soit à ce point en deça de celle des chinois, roumain ou autre bulgares. Il est donc réellement inquiétant que leur classement soit aussi modeste.
Dans une vieille interview, Khanane prédisait qu'il est très probable que la France compte très, très peu de médaillés Fields dans le futur et prenait comme un des signes révélateurs, nos résultats obtenus lors des olympiades.
Mais je te rejoins totalement pour réfuter les pseudo-conclusions de notre chercheur canadien.

Alex 21/12/2005 21:19

réflexions intéressantes et bien menés.